skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Regnault, Florian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The aim of this study is to use multispacecraft measurements of interplanetary magnetic clouds (MCs) to better constrain and understand the effect of expansion on their magnetic field properties. We develop a parameter (γ) for comparing magnetic field components measured at multiple spacecraft. We use the minimum variance technique on the magnetic field data to obtain the axial and azimuthal components. The parameterγacts at the front boundary as a measure of the global difference in the evolution with heliospheric distance of the axial and azimuthal magnetic field components of MCs. Our goal is to determine whether the studied MCs exhibit self-similar expansion and, if so, whether this expansion is predominantly isotropic or radial, based on the estimatedγ. Through our analysis of data from multiple spacecraft, we observe a notable consistency in theγvalues across the examples examined. We find that the overall expansion of these MCs tends to be isotropic, while the local expansion of MCs, derived from theγvalues measured at the rear boundary of MCs, usually shows anisotropic behavior, particularly when the distances between the observations from the two spacecraft are relatively short. This discovery offers insights for refining flux rope models and advancing our comprehension of the expansion processes associated with coronal mass ejections. 
    more » « less
  2. Abstract Coronal mass ejections (CMEs) are large-scale eruptions with a typical radial size at 1 au of 0.21 au but their angular width in interplanetary space is still mostly unknown, especially for the magnetic ejecta (ME) part of the CME. We take advantage of STEREO-A angular separation of 20°–60° from the Sun–Earth line from 2020 October to 2022 August, and perform a two-part study to constrain the angular width of MEs in the ecliptic plane: (a) we study all CMEs that are observed remotely to propagate between the Sun–STEREO-A and the Sun–Earth lines and determine how many impact one or both spacecraft in situ, and (b) we investigate all in situ measurements at STEREO-A or at L1 of CMEs during the same time period to quantify how many are measured by the two spacecraft. A key finding is that out of 21 CMEs propagating within 30° of either spacecraft only four impacted both spacecraft and none provided clean magnetic cloud-like signatures at both spacecraft. Combining the two approaches, we conclude that the typical angular width of an ME at 1 au is ∼20°–30°, or 2–3 times less than often assumed and consistent with a 2:1 elliptical cross section of an ellipsoidal ME. We discuss the consequences of this finding for future multi-spacecraft mission designs and for the coherence of CMEs. 
    more » « less
  3. Abstract Magnetic clouds (MCs) are most often fitted with flux rope models that are static and have symmetric magnetic field profiles. However, spacecraft measurements near 1 au show that MCs usually expand when propagating away from the Sun and that their magnetic field profiles are asymmetric. Both effects are expected to be related, since expansion has been shown to result in a shift of the peak of the magnetic field toward the front of the MC. In this study, we investigate the effects of expansion on the asymmetry of the total magnetic field strength profile of MCs. We restrict our study to the simplest events, i.e., those that are crossed close to the nose of the MC. From a list of 25 such “simple” events, we compare the fitting results of a specific expanding Lundquist model with those of a classical force-free circular cross-sectional static Lundquist model. We quantify the goodness of the fits by the χ 2 of the total magnetic field and identify three types of MCs: (i) those with little expansion, which are well fitted by both models; (ii) those with moderate expansion, which are well fitted by the expanding model, but not by the static model; and (iii) those with expansion, whose asymmetry of the magnetic field cannot be explained. We find that the assumption of self-similar expansion cannot explain the measured asymmetry in the magnetic field profiles of some of these magnetic ejecta (MEs). We discuss our results in terms of our understanding of the magnetic fields of the MEs and their evolution from the Sun to Earth. 
    more » « less
  4. Magnetic flux ropes manifest as twisted bundles of magnetic field lines. They carry significant amounts of solar mass in the heliosphere. This paper underlines the need to advance our understanding of the fundamental physics of heliospheric flux ropes and provides the motivation to significantly improve the status quo of flux rope research through novel and requisite approaches. It briefly discusses the current understanding of flux rope formation and evolution, and summarizes the strategies that have been undertaken to understand the dynamics of heliospheric structures. The challenges and recommendations put forward to address them are expected to broaden the in-depth knowledge of our nearest star, its dynamics, and its role in its region of influence, the heliosphere. 
    more » « less
  5. This perspective paper brings to light the need for comprehensive studies on the evolution of interplanetary coronal mass ejection (ICME) complexity during propagation. To date, few studies of ICME complexity exist. Here, we define ICME complexity and associated changes in complexity, describe recent works and their limitations, and outline key science questions that need to be tackled. Fundamental research on ICME complexity changes from the solar corona to 1 AU and beyond is critical to our physical understanding of the evolution and interaction of transients in the inner heliosphere. Furthermore, a comprehensive understanding of such changes is required to understand the space weather impact of ICMEs at different heliospheric locations and to improve on predictive space weather models. 
    more » « less